Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(2): 179-191, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38457218

RESUMO

Dry particle coating processes are of key importance for creating functionalized materials. By a change in surface structure, initiated during coating, a surface property change and thus functionalization can be achieved. This study introduces an innovative approach employing 3D X-ray micro-computed tomography (micro-CT) to characterize coated particles, consisting of spherical alumina particles (d50 = 45.64 µm), called hosts, surrounded by spherical polystyrene particles (d50 = 3.5 µm), called guests. The formed structures, hetero-aggregates, are generated by dry particle coating using mechano-fusion (MF). A deeper understanding of the influence of MF process parameters on the coating structures is a crucial step toward tailoring of coating structure, resulting surface property and functionalization. Therefore, the influence of rotational speed, process time, and total mechanical energy input during MF is explored. Leveraging micro-CT data, acquired of coated particles, enables non-stereologically biased and quantitative coating structure analysis. The guest's coating thickness is analyzed using the maximum inscribed sphere and ray method, two different local thickness measurement approaches. Particle-discrete information of the coating structure are available after a proper image processing workflow is implemented. Coating efficiency and guest's neighboring relations (nearest neighbor distance and number of neighbors inside search radius) are evaluated.

2.
Langmuir ; 40(5): 2543-2550, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277485

RESUMO

There are various possibilities for changing the surface properties of particles. In this work, the charge reversal on different metal oxides with different electrolytes is investigated and whether this allows a change in wettability due to a subsequent adsorption of surfactants, e.g., sodium dodecyl sulfate (SDS). It is investigated if the materials of the particles differ only by the isoelectric point or if the surface chemistry of the materials has an influence on the charge reversal as well. Furthermore, the adsorption of SDS as an anionic surfactant is examined, which is also characterized by a second charge reversal and related to a sign change of the electrophoretic mobility µe. Finally, it is examined whether the adsorption of the hydrolyzed metal ions and the subsequent adsorption of SDS are effective enough to hydrophobize the particles and allow phase transfer from the aqueous to second nonaqueous liquid phase. In addition, the influence of pH is investigated because the hydrolyzed metal cations are formed only in a certain pH range, which means that the bridge formed between the particle surface and the surfactant works only in a certain pH range, which would allow pH-selective extraction of the particle system into the second nonaqueous liquid phase.

3.
Langmuir ; 39(38): 13630-13640, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708865

RESUMO

The dynamics of the three-phase contact line during particle-bubble interactions determine the stability of particle-bubble aggregates in flotation. The interaction of particles and sessile gas bubbles can be studied by colloidal probe atomic force microscopy (CP-AFM). This paper demonstrates a method to obtain the contact angle, the position of the three-phase contact line on the particle, and the bubble profile by utilizing the full information contained in AFM force-distance curves, i.e., force and CP-position information as well as the work done to move the three-phase contact line on the CP-particle. The proposed method does not require any assumption of a constant contact angle or a constant opening angle. This is achieved by the combined solution of the particle force balance and an expression for the work required to move the three-phase contact line over the colloid probe. The applicability to AFM force-distance measurements was demonstrated for the interaction of a hydrophobic SiO2 or a hydrophobic Al2O3 colloidal probe particle with sessile gas bubbles having radii between 45 and 80 µm.

4.
J Colloid Interface Sci ; 532: 689-699, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121521

RESUMO

A method for the determination of interactions between yeast cells and air bubbles using the atomic force microscope was developed, in which a bubble acts as probe on immobilised living cells. The experimental setup and influencing parameters like bubble size, dwell time and maximum contact force on force-distance curves and maximum adhesion forces are explained. Also, interactions between bubble and yeast cells under variation of pH, ethanol concentration, salt concentration, ionic strength and influence of storage time in Yeast Malt Broth and phosphate buffered saline are investigated and discussed.


Assuntos
Ar , Membrana Celular/metabolismo , Microbolhas , Saccharomyces/química , Soluções Tampão , Células Imobilizadas , Etanol/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Concentração Osmolar , Tamanho da Partícula , Saccharomyces/citologia , Solução Salina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...